HANDBOOK OF WATER AND WASTE WATER TREATMENT TECHNOLOGIES
BY NICHOLAS P. CHEREMISINOFF
FREE DOWNLOAD PDF
ABOUT THE BOOK
HANDBOOK OF WATER AND WASTE WATER TREATMENT TECHNOLOGIES
AUTHOR : NICHOLAS P. CHEREMISINOFF
This volume covers the technologies that are applied to the treatment and purification of water. Those who are generally familiar with this field will immediately embrace the subject as a treatise on solid-liquid separations. However, the subject is much broader, in that the technologies discussed are not just restricted to pollution control hardware that rely only upon physical methods of treating and purifying wastewaters. The book attempts to provide as wide a coverage as possible those technologies applicable to both water (e.g., drinking water) and wastewater (i.e., industrial and municipal) sources. The methods and technologies discussed are a combination of physical, chemical and thermal techniques. There are twelve chapters. The first of these provides an orientation of terms and concepts, along with reasons why water treatment practices are needed. This chapter also sets the stage for the balance of the book by providing an organizational structure to the subjects discussed. The second chapter covers the AB-Cs of filtration theory and practices, which is one of the fundamental unit operations addressed in several chapters of the book. Chapter 3 begins to discuss the chemistry of wastewater and focuses in on the use of chemical additives that assist in physical separation processes for suspended solids. Chapters 4 through 7 cover technology-specific filtration practices. There is a wide range of hardware options covered in these three chapters, with applications to both municipal and industrial sides of the equation. Chapter 8 covers the subjects of sedimentation, clarification flotation, and coalescence, and gets us back into some of the chemistry issues that are important achieving high quality water. Chapter 9 covers membrane separation technologies which are applied to the purification of drinking water.
Chapter 10 covers two very important water purification technologies that have found applications not only in drinking water supply and beverage industry applications, but in groundwater remediation applications. These technologies are ion exchange and carbon adsorption. Chapter 11 covers chemical and non-chemical water sterilization technologies, which are critical to providing high quality drinking water. The last chapter focuses on the solid waste of wastewater treatment - sludge. This chapter looks not only at physico-chemical and thermal methods of sludge dewatering, but we explore what can be done with these wastes and their impact on the overall costs that are associated with a water treatment plant operation. Sludge, like water, can be conditioned and sterilized, thereby transforming it from a costly waste, requiring disposal, to a useful byproduct that can enter into secondary markets. Particular emphasis is given to pollution prevention technologies that are not only more environmentally friendly than conventional waste disposal practices, but more cost effective - Preface by the author.
CONTENTS
- An Overview of Water and Wastewater Treatment
- What Filtration Is All About
- Chemical Additives that Enhance Filtration
- Selecting the Right Filter Media
- What Pressure- and Cake-Filtration Are All About
- Cartridge and Other Filters Worth Mentioning
- What Sand Filtration is All About
- Sedimentation, Clarification, Flotation, and Coalescence
- Membrane Separation Technologies
- Ion Exchange and Carbon Adsorption
- Water Sterilization Technologies
- Treating the Sludge
DETAILED CONTENTS
0 comments:
Post a Comment